آخرین مطالب
خانه » مقالات » ترانسفورماتورها

ترانسفورماتورها

ترانسفورماتورها

ترانسفورماتورها

ترانسفورماتورها یکی از مهمترین عناصر شبکه های انتقال و توزیع هستند . در ترانسفورماتورها انرژی الکتریکی در مس سیم پیچها ، آهن هسته ، تانک ترانس و سازه های نگهدارنده بصورت حرارت تلف می شود. حتی در زمانیکه ترانسفورماتور بدون بار است ، در هسته تلفات بی باری (NLL) بوجود می آید. در نتیجه مطالعات و بررسیهای انجام شده ، در ۵۰ ساله اخیر محققان موفق شده اند با صرف هزینه ای دو برابر برای هسته ، تلفات بی باری را به یک سوم کاهش دهند. اخیراً با جایگزینی فلزات بیشکل و غیر بلوری (Amorphous) بجای آهن سیلیکونی درهسته ترانسفورماتورهای توزیع با قدرت نامی کوچکتر از ۱۰۰ KVA ، تلفات بی باری باز هم کاهش یافته است . این کار هنوز در مورد ترانسفورماتورهای بزرگ با قدرت نامی بزرگتر از ۵۰۰KVA انجام نشده است . اگرچه برای هر ترانسفورماتور ، ۱ درصد توان نامی آن بعنــوان  توان تلفـاتی در نظر گرفتـه می شود، اما باید توجه داشت که آزاد سازی بخش کوچکی از این تلفات در طول عمر ترانسفورماتور صرفه جوئی کلانی به همراه خواهد داشت . در ترانسفورماتورهای قدرت معمول ، تقریباً ۸۰% از کل تلفات ، مربوط به تلفات بارداری ترانسفورماتور (LL) است که از این ۸۰% ، سهم تلفات اهمی سیم پیچها ۸۰ % بوده و ۲۰ % دیگر مربوط به تلفات ناشی از جریانهای فوکو و شارهای پراکنده است . لذا تلاشهای زیادی جهت کاهش تلفات بارداری صورت می گیرد. در ابررساناها بعلت عدم وجود مقاومت اهمی در برابر جریان d c تلفات اهمی برابر با صفر است . لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات کل ترانسفورماتور، کاهش قابل ملاحظه ای خواهد یافت. در مقابل جریان ac ، در ابر رساناها تلفاتی از نوع تلفات فوکو رخ می دهد. گرمای بوجود آمده از این تلفات باید با استفاده از سیستم های خنک کننده دفع گردد.بررسیهای بعمل آمده حاکی از آن است که ترانسفورماتورهای ابررسانا با قدرت ۱۰ MVA و بالاتر عملکرد نسبتا بهتری داشته و نسبت به ترانسفورماتورهای معمولی قیمت پایینتری خواهند داشت .

تلاشهایی که جهت توسعه ترانسفورماتورهای ابررسانا انجام می گیرد صرفاً بخاطر مسایل اقتصادی و کاهش هزینه کل نیست. یکی دیگر از دلایل طرح این مبحث آنست که در مراکز پر تراکم شهری، رشد مصرف ۲ درصدی (سالیانه ) به معنی نیاز به ارتقاء ظرفیت سیستم های موجود است . از طرفی بسیاری ازپستهای توزیع بصورت سرپوشیده (Indoor) بوده و در کنار ساختمانها نصب شده اند. در این نوع پست ها همانند دیگر پستهای توزیع از ترانسهای روغنی استفاده میشود که استفاده از روغن مشکلات و خطرات زیست محیطی و ایمنی مربوط به خود را دارد. در حالیکه در ترانسفورماتورهای ابررسانا، ماده خنک کننده نیتروژن است که خطری برای افراد و موجودات زنده نداشته ، بعلاوه ، خطر آتش سوزی نیز وجود ندارد. بهمین لحاظ خنک کننده مورد استفاده در ترانسفورماتورهای ابررسانا به هیچ عنوان قابل مقایسه با روغنهای قابل اشتعال و مواد شیمیایی همچون PCB نیست .

توجه جدی به ترانسفورماتورهای ابررسانا از زمان شناخت ابررساناهای دمای پایین LTS ( اعم از Nb-Ti و Nb3-Sn ) از اوایل دهه ۱۹۶۰ ، آغاز شد. مطالعاتی که در آن زمان بر روی این ترانسفورماتورها انجام شد ، نشان داد که جهت بهره برداری از این ترانسفورماتورها، باید آنها را در دمای ۴ .۲K نگه داشت که انجام چنین کاری اقتصادی نیست . بهمین دلیل گامها بسوی کشف موادی با قابلیت ابررسانایی در دماهای بالاتر ، برداشته شد. در اواسط دهه ۱۹۷۰ ، شرکت Westing House ، طرح یک ترانسفورماتور نیروگاهی ۵۵۰/۲۲kv , 1000MVA را مورد مطالعه  قرار داد و به این نتیجه رسید که مشکلاتی از قبیل انتقال جریان ، عملکرد فوق جریان (Overcurrent) و حفاظت همچنان وجود خواهند داشت.

از سال ۱۹۸۰ ، توسعه ترانسفورماتورهای LTS توسط شرکت های GEC-Alsthom , ABB ، در اروپا و چند شرکت صنعتی و مرکز دانشگاهی در ژاپن، مورد پیگیری قرار گرفت . پیشرفت های بعمل آمده در تولید هادیهای طویل Nb-Ti و مواد با مقاومت بالا (Cu-Ni) بر کاهش تلفات ac تاثیر زیادی داشته است . مساله عملی بودن کاهش وزن و افزایش راندمان نیز بر روی ترانسفورماتورهای با قدرتهای کمتر از ۱۰۰KVA (تکفاز ۸۰KVA Alsthom) ، (Toshiba)30KVA و سه فاز ۴۰KVA (دانشگاه Osaka) مورد بررسی قرار گرفت . هم چنین ترانسفورماتورهای بزرگتری نیز ساخته شده و آزمایشهای مربوطه را با موفقیت پشت سر گذاشتند. در یک ترانسفورماتور تکفاز ۳۳۰KVA ساخت ABB پیش بینی های لازم برای محدود سازی جریان خطا و حفاظت در برابر یخ زدگی در نظر گرفته شد. شرکت برق Kansai Electric نیز گزارشی از ترانسفورماتور LTS با هادی Nb3Sn با قدرت ۲۰۰۰ KVA ارائه نموده است .